Liên hệ: 0903917667 hoặc sales@lequoc.net

Kiến thức

LASER

Laser (đọc là la-de) là tên viết tắt của cụm từ Light Amplification by Stimulated Emission of Radiation trong tiếng Anh, và có nghĩa là "khuếch đại ánh sáng bằng phát xạ kích thích".

LASER 

 

Laser (đọc là la-de) là tên viết tắt của cụm từ Light Amplification by Stimulated Emission of Radiation trong tiếng Anh, và có nghĩa là "khuếch đại ánh sáng bằng phát xạ kích thích".

Electron tồn tại ở các mức năng lượng riêng biệt trong một nguyên tử. Các mức năng lượng có thể hiểu là tương ứng với các quỹ đạo riêng biệt của electron xung quanh hạt nhân. Electron ở bên ngoài sẽ có mức năng lượng cao hơn những electron ở phía trong. Khi có sự tác động vật lý hay hóa học từ bên ngoài, các hạt electron này cũng có thể nhảy từ mức năng lượng thấp lên mức năng lượng cao hay ngược lại. Các quá trình này có thể sinh ra hay hấp thụ các tia sáng (photon) theo giả thuyết của Albert EinsteinBước sóng (do đó màu sắc) của tia sáng phụ thuộc vào sự chênh lệch năng lượng giữa các mức.
Có nhiều loại laser khác nhau, có thể ở dạng hỗn hợp khí, ví dụ He-Ne, hay dạng chất lỏng, song có độ bức xạ lớn nhất vẫn là tia laser tạo bởi các thành phần từ trạng thái chất rắn.
Máy cân bằng laser
  Laser He-Ne

Lịch sử
Laser được phỏng theo maser, một thiết bị có cơ chế tương tự nhưng tạo ra tia vi sóng hơn là các bức xạ ánh sáng. Maser đầu tiên được tạo ra bởi Charles H. Townes và sinh viên tốt nghiệp J.P. Gordon và H.J. Zeiger vào năm 1953. Maser đầu tiên đó không tạo ra tia sóng một cách liên tục. Nikolay Gennadiyevich Basov và Aleksandr Mikhailovich Prokhorov của Liên bang Xô viết đã làm việc độc lập trên lĩnh vực lượng tử dao động và tạo ra hệ thống phóng tia liên tục bằng cách dùng nhiều hơn 2 mức năng lượng. Hệ thống đó có thể phóng ra tia liên tục mà không cho các hạt xuống mức năng lượng bình thường, vì thế vẫn giữ tần suất. Năm 1964Charles Townes, Nikolai Basov và Aleksandr Prokhorov cùng nhận giải thưởng Nobel vật lý về nền tảng cho lĩnh vực điện tử lượng tử, dẫn đến việc tạo ra máy dao động và phóng đại dựa trên thuyết maser-laser.
Laser hồng ngọc, một laser chất rắn, được tạo ra lần đầu tiên vào năm1960, bởi nhà vật lý Theodore Maiman tại phòng thí nghiệm Hughes Laboratory ở Malibu, CaliforniaHồng ngọc là ôxít nhôm pha lẫn crôm. Crôm hấp thụ tia sáng màu xanh lá cây và xanh lục, để lại duy nhất tia sáng màu hồng phát ra.
Robert N. Hall phát triển laser bán dẫn đầu tiên, hay laser diod, năm1962. Thiết bị của Hall xây dựng trên hệ thống vật liệu gali-aseni và tạo ra tia có bước sóng 850 nanômét, gần vùng quang phổ tia hồng ngoại. Laser bán dẫn đầu tiên với tia phát ra có thể thấy được được trưng bày đầu tiên cùng năm đó. Năm 1970Zhores Ivanovich Alferov của Liên Xô và Hayashi và Panish của Phòng thí nghiệm Bell đã độc lập phát triển laser diode hoạt động liên tục ở nhiệt độ trong phòng, sử dụng cấu trúc đa kết nối.

Cấu tạo
·         Nguyên lý cấu tạo chung của một máy laser gồm có: buồng cộng hưởng chứa hoạt chất laser, nguồn nuôi và hệ thống dẫn quang. Trong đó buồng cộng hưởng với hoạt chất laser là bộ phận chủ yếu.
·         Buồng cộng hưởng chứa hoạt chất laser, đó là một chất đặc biệt có khả năng khuyếch đại ánh sáng bằng phát xạ cưỡng bức để tạo ra laser. Khi 1 photon tới va chạm vào hoạt chất này thì kéo theo đó là 1 photon khác bật ra bay theo cùng hướng với photon tới. Mặt khác buồng công hưởng có 2 mặt chắn ở hai đầu, một mặt phản xạ toàn phần các photon khi bay tới, mặt kia cho một phần photon qua một phần phản xạ lại làm cho các hạt photon va chạm liên tục vào hoạt chất laser nhiều lần tạo mật độ photon lớn. Vì thế cường độ chùm laser được khuếc đại lên nhiều lần. Tính chất của laser phụ thuộc vào hoạt chất đó, do đó người ta căn cứ vào hoạt chất để phân loại laser.
Máy chiếu laser xây dựng
Cấu tạo cơ bản và cơ chế hoạt động của laser.
1) Buồng cộng hưởng (vùng bị kích thích)
2) Nguồn nuôi (năng lượng bơm vào vùng bị kích thích)
3) 
gương phản xạ toàn phần
4) 
gương bán mạ  5) tia laser

 

 

Cơ chế
Một ví dụ về cơ chế hoạt động của laser có thể được miêu tả cho laser thạch anh.
·         Dưới sự tác động của hiệu điện thế cao, các electron của thạch anh di chuyển từ mức năng lượng thấp lên mức năng lương cao tạo nên trạng thái nghịch đảo mật độ tích lũy của electron.
·         Ở mức năng lượng cao, một số electron sẽ rơi ngẫu nhiên xuống mức năng lượng thấp, giải phóng hạt ánh sáng được gọi là photon.
·         Các hạt photon này sẽ toả ra nhiều hướng khác nhau từ một nguyên tử, va phải các nguyên tử khác, kích thích eletron ở các nguyên tử này rơi xuống tiếp, sinh thêm các photon cùng tần số, cùng pha và cùng hướng bay, tạo nên một phản ứng dây chuyền khuyếch đại dòng ánh sáng.
·         Các hạt photon bị phản xạ qua lại nhiều lần trong vật liệu, nhờ các gương để tăng hiệu suất khuếch đại ánh sáng.
·         Một số photon ra ngoài nhờ có gương bán mạ tại một đầu của vật liệu. Tia sáng đi ra chính là tia laser.

Phân loại

Laser chất rắn
Có khoảng 200 chất rắn có khả năng dùng làm môi trường hoạt chất laser. Một số loại laser chất rắn thông dụng:
·         YAG-Neodym: hoạt chất là Yttrium Aluminium Garnet (YAG) cộng thêm 2-5% Neodym, có bước sóng 1060nm thuộc phổ hồng ngoại gần. Có thể phát liên tục tới 100W hoặc phát xung với tần số 1000-10000Hz.
·         Hồng ngọc (Rubi): hoạt chất là tinh thể Alluminium có gắn những ion chrom, có bước sóng 694,3nm thuộc vùng đỏ của ánh sáng trắng.
·         Bán dẫn: loại thông dụng nhất là diot Gallium Arsen có bước sóng 890nm thuộc phổ hồng ngoại gần.

Laser chất khí
·         He-Ne: hoạt chất là khí Heli và Neon, có bước sóng 632,8nm thuộc phổ ánh sáng đỏ trong vùng nhìn thấy, công suất nhỏ từ một đến vài chục mW. Trong y học được sử dụng làm laser nội mạch, kích thích mạch máu
·         Argon: hoạt chất là khí argon, bước sóng 488 và 514,5nm.
·         CO2: bước sóng 10.600nm thuộc phổ hồng ngoại xa, công suất phát xạ có thể tới megawatt (MW). Trong y học ứng dụng làm dao mổ.

LASER chất lỏng
Môi trường hoạt chất là chất lỏng, thông dụng nhất là laser màu.

Tính chất
·         Độ định hướng cao: tia laser phát ra hầu như là chùm song song do đó khả năng chiếu xa hàng nghìn km mà không bị phân tán.
·         Tính đơn sắc rất cao: chùm sáng chỉ có một màu (hay một bước sóng) duy nhất. Do vậy chùm laser không bị tán xạ khi đi qua mặt phân cách của hai môi trường có chiết suất khác nhau. Đây là tính chất đặc biệt nhất mà không nguồn sáng nào có.
·         Tính đồng bộ của các photon trong chùm tia laser: Có khả năng phát xung cực ngắn: cỡ mili giây (ms), nano giây, pico giây, cho phép tập trung năng lượng tia laser cực lớn trong thời gian cực ngắn.

Các chế độ hoạt động
Laser có thể được cấu tạo để hoạt động ở trạng thái bức xạ sóng liên tục (hay CW - continuous wave) hay bức xạ xung (pulsed operation). Điều này dẫn đến những khác biệt cơ bản khi xây dựng hệ laser cho những ứng dụng khác nhau.

Chế độ phát liên tục
Trong chế độ phát liên tục, công suất của một laser tương đối không đổi so với thời gian. Sự đảo nghịch mật độ (electron) cần thiết cho hoạt động laser được duy trì liên tục bởi nguồn bơm năng lượng đều đặn.

Chế độ phát xung
Trong chế độ phát xung, công suất laser luôn thay đổi so với thời gian, với đặc trưng là các giai đoạn “đóng” và “ngắt” cho phép tập trung năng lượng cao nhất có thể trong một thời gian ngắn nhất có thể. Cácdao laser là một ví dụ, với năng lượng đủ để cung cấp một nhiệt lượng cần thiết, chúng có thể làm bốc hơi một lượng nhỏ vật chất trên bề mặt mẫu vật trong thời gian rất ngắn. Tuy nhiên, nếu cùng năng lượng như vậy nhưng tiếp xúc với mẫu vật trong thời gian dài hơn thì nhiệt lượng sẽ có thời gian để xuyên sâu vào trong mẫu vật do đó phần vật chất bị bốc hơi sẽ ít hơn. Có rất nhiều phương pháp để đạt được điều này, như:
·         Phương pháp chuyển mạch Q (Q-switching)
·         Phương pháp kiểu khoá (modelocking)
·         Phương pháp bơm xung (pulsed pumping)
 An toàn
Laser với cường độ thấp, chỉ là vài miliwatt, cũng có thể nguy hiểm vớimắt người. Tại bước sóng mà giác mạc mắt và thủy tinh thể có thể tập trung tốt, nhờ tính đồng nhất và sự định hướng cao của laser, một công suất năng lượng lớn có thể tập trung vào một điểm cực nhỏ trên võng mắt. Kết quả là một vết cháy tập trung phá hủy các tế bào mắt vĩnh viễn trong vài giây, thậm chí có thể nhanh hơn. Độ an toàn của laser được xếp từ I đến IV. Với độ I, tia laser tương đối an toàn. Với độ IV, thậm chí chùm tia phân kỳ có thể làm hỏng mắt hay bỏng da. Các sản phẩm laser cho đồ dân dụng như máy chơi CD và bút laser dùng trong lớp học được xếp hạng an toàn từ I, II, hay III. 

Vào thời điểm được phát minh năm 1960, laser được gọi là "giải pháp để tìm kiếm các ứng dụng". Từ đó, chúng trở nên phổ biến, tìm thấy hàng ngàn tiện ích trong các ứng dụng khác nhau trên mọi lĩnh vực của xã hội hiện đại, như phẫu thuật mắthướng dẫn phương tiện trong tàu không gian, trong các phản ứng hợp nhất hạt nhân... Laser được cho là một trong những phát minh ảnh hưởng nhất trong thế kỉ 20.
Trong công nghiệp xây dựng, máy laser xây dựng ra đời nhằm thay thế các công cụ đo đạc truyền thống như ống nước, dây dọi, máy thuỷ bình... Tia ngang thuỷ bình cân bằng tự động giúp gởi cốt dễ dàng, các tia đứng vuông góc tia ngang để dóng dọi, bóp ke vuông góc để ốp lát. Bên cạnh đó, laser còn ứng dụng trong đo khoảng cách bằng laser thay cho thước dây truyền thống. Thước thuỷ truyền thống nay được tích hợp thêm tia laser (thước thuỷ laser) để kéo dài phương nghiêng ra xa 30-40m và hiển thị số độ nghiêng (thước thuỷ điện tử). Tốc độ quay của động cơ và các trục quay cũng được ứng dụng laser để đo. Laser còn được ứng dụng trong máy đo nhiệt độ từ xa. Người dùng chỉ cần đứng từ xa bắn điểm laser đến nguồn nhiệt là có thể biết chính xác nhiệt độ, rất an toàn.

 

TƯ VẤN VÀ ĐẶT HÀNG: 0903917667

 

GIAO HÀNG TẬN NƠI MIỄN PHÍ TOÀN QUỐC

 

NHẬN HÀNG - THANH TOÁN